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This paper estimates various interpolation/extrapolation functions for the theta parameters
within the theta projection technique and assesses their ability to accurately predict the
creep life of 1CrMoV rotor steel. The theta interpolation/extrapolation functions were
estimated using short-term data collected at the Interdisciplinary Research Laboratories in
Swansea and the accuracy of the predictions assessed using longer-term rupture times
published by the National Research Institute of Metals in Japan. It was found that the theta
interpolation/extrapolation function traditionally used by theta practioners was not the best
predictor of long term life and that the most accurate long term life predictions were
obtained using simpler functional forms. Further, it was found that more accurate lifetime
predictions are obtained by estimating such interpolation/extrapolation functions using
weighted rather than ordinary least squares. C© 2002 Kluwer Academic Publishers

1. Introduction
When designing materials for high temperature ser-
vice the design criteria for long-term operation must
guarantee that creep failure should not occur within the
planned service life. Such creep fracture represents an
obvious life limiting design consideration, as fracture of
the pipe work or turbine blades used by the nuclear pow-
ered electricity generating plants would prove catas-
trophic. For this reason time to rupture has been a major
criterion used to assess the accuracy of a creep property
projection technique. The theta projection technique is
one of a number of models currently available.

The theta projection technique has already been
shown to yield excellent medium-term predictions for
both the time to rupture and the minimum creep rate of
1CrMoV rotor steels (Evans [1] and Evans et al. [2]).
The technique has the added advantage over traditional
parametric procedures (such as the Larson-Miller tech-
nique [3]) in that creep property predictions are not
limited to the rupture time and the mathematical equa-
tions have very recently been given some sound theo-
retical footings [4]. Times to various strains can also be
predicted using the theta projection technique. Further,
the technique has recently been shown, by Wang and
Evans [5], to outperform both the Continuum Damage
model of Othman and Hayhurst [6] and the CRISPEN
model of Ion et al. [7] in the prediction of long term rup-
ture times and minimum creep rates for 316 stainless
steel.

Since its first appearance in the literature during the
mid 1980’s, the theta projection technique has under-
gone a number of modifications. On the theoretical side

Evans [4] has given the creep curve equation used by
the theta projection technique a theoretical explanation.
On the practical side, this creep curve equation has been
modified to improve the fit to the experimental data at
very small strains [8, 9]. This has involved the introduc-
tion of two additional parameters into the creep curve
equation. Most recently an improved method for deriv-
ing the weights required for a weighted least squares
estimate of the theta interpolation/extrapolation func-
tion has been proposed and applied [10].

However, little research has gone into validating the
functional form of the theta interpolation/extrapolation
function. This function is used within the theta projec-
tion technique to project the creep curve parameters ob-
tained at accelerated test conditions (and thus the creep
curve and rupture time) to design stresses and temper-
atures. Yet it is this stage of the theta projection tech-
nique that is so crucial to reliable predictions of long
term creep life. The purpose of this paper is to com-
pare the theta interpolation/extrapolation function that
is traditionally used within the theta projection tech-
nique with other possible functional forms suggested
by various theories of creep and rate processes. Such
a comparison will be made in terms of the accuracy of
the resulting long term rupture time predictions.

To achieve this aim this paper is structured as fol-
lows. In the next section the experimental procedures
and databases used are reviewed. The following section
outlines the theta projection technique, how it is tradi-
tionally applied, what the plausible functional forms are
for the theta interpolation/extrapolation function and
how the accuracy of any set of rupture time predictions
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can be measured. Then in Section 4, these different in-
terpolation/extrapolation functions are estimated using
both ordinary and weighted least squares and the im-
pact of these different theta interpolation/extrapolation
functions on the accuracy of long term creep life predic-
tions is then assessed. This will be achieved using two
sources of data on 1CrMoV rotor steel. A final section
concludes.

T ABL E I Composition and heat treatment for 1CrMoV rotor steel

Chemical composition (wt%)

Batcha C Si Mn S P Cr Ni Mo V Cu Al Sn Heat treatment

IRC 0.26 0.23 0.64 0.002 0.006 0.98 0.64 0.74 0.31 0.04 0.007 0.004 Normalized 1243 K; Tempered 973 K
VaA 0.28 0.2 0.72 0.001 0.015 1.02 0.32 1.12 0.27 0.2 0.002 0.008 Normalized 1233 K; Tempered 933 K
VaB 0.28 0.18 0.75 0.009 0.012 1.00 0.32 1.25 0.27 0.14 0.002 0.009 Normalized 1243 K; Tempered 933 K
VaC 0.29 0.2 0.75 0.009 0.01 1.00 0.34 1.25 0.26 0.14 0.002 0.008 Normalized 1233 K; Tempered 938 K
VaD 0.30 0.28 0.72 0.006 0.014 0.93 0.35 1.22 0.21 0.16 0.002 0.009 Normalized 1238 K; Tempered 918 K
VaE 0.30 0.26 0.79 0.015 0.016 1.03 0.32 1.13 0.23 0.19 0.002 0.009 Normalized 1238 K; Tempered 920 K
VaG 0.29 0.26 0.76 0.007 0.009 1.12 0.45 1.18 0.23 0.07 0.003 0.01 Normalized 1233 K; Tempered 920 K
VaH 0.29 0.26 0.77 0.007 0.009 1.12 0.46 1.2 0.23 0.08 0.004 0.01 Normalized 1248 K; Tempered 930 K
VaJ 0.29 0.21 0.66 0.008 0.01 1.07 0.51 1.29 0.23 0.06 0.005 0.01 Normalized 1248 K; Tempered 925 K
VaR 0.3 0.27 0.70 0.012 0.012 1.1 0.44 1.35 0.27 0.11 0.003 0.008 Normalized 1248 K; Tempered 918 K

aIRC is the batch of material tested at the IRC (Swansea) as part of a consortium group and VaA to VaR are the nine batches of steel tested by NRIM.
The balance for all the above batches is Fe.

TABL E I I Number of specimens tested at accelerated and long-term test conditions

Number of specimensa tested at the following temperatures

Stress (MPa) 723 K 783 K 803 K 823 K 843 K 863 K 898 K 923 K 948 K

425 1
415 1
412 1 1
400 1
380 1 1
373 1 9
370 1
360 1 1
350 1
345 1
340 1 1 1
333 9 1 2
330 1 1
320 1
314 2
310 1 1 1
300 1
294 9 9
290 1 1 1
270 1 1 2
265 9 1 9 1
250 1 1
240 1
235 9 1 9 9
230 1
220 1
216 1 1
196 9 1
177 9 1 9
157 9 1
137 9 1 9 1 9
118 1
98 9 1 9 1
69 9 1 9
61 9
47 6 9 1

aNormal numerals correspond to the accelerated tests carried out at the IRC laboratories (Swansea) on a single batch of material. Bold numerals
correspond to the longer-term tests carried out by NRIM on nine batches of material. In addition to the above tests a further single specimen was
tested at the IRC laboratories at 833 K and 270 MPa.

2. Experimental procedures
Two sources of data are used in this present investiga-
tion. The first source of data comes from testing a batch
of material representing the lower bound creep strength
properties anticipated for 1CrMoV rotor steels. This
batch of material was tested at the IRC creep laborato-
ries (Swansea) as part of a consortium testing program
using high precision constant stress machines. The
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material consisted of fabricated header pipe with an out-
side diameter of 400 mm and a wall thickness of 60 mm.
The chemical composition of this batch of material and
the heat treatment received is shown in the top row of
Table I. Following this heat treatment the material had,
at room temperature, a tensile strength of 763 MPa, an
elongation of 19% and a 0.2% proof stress of 634 MPa.

T ABL E I I I Least squares parameter estimates for various interpolation/extrapolation functions for �1

Variable

Model for �1 Constant T 1/T τ/T τ ∗T Ln[1/T ] τ

Model for W ∗
1 �1 W1 W ∗

1 T W1/T (W ∗
1 τ )/T W ∗

1 τ ∗T W ∗
1 Ln[1/T ] W ∗

1 τ

Equation 2c −11.4167 0.0072 – – 5.2687E-06 – −0.0015
(−0.55) (0.29) (0.07) (−0.02)
−30.2146 0.0277 – – −3.3570E-06 – 0.0351
(−3.73)∗ (2.86)∗ (−1.08) (1.38)

Equation 4a 2.5443 – −6611.67 2.3038 – – –
(0.51) (−1.38) (0.88)
9.8384 – −14284.6 6.5632 – – –
(3.50)∗ (−5.34)∗ (4.85)∗

Equation 4b 1.1805 – −5491.34 −1.2202 – – 0.0043
(0.06) (−0.32) (−0.02) (0.07)
17.9866 – −20927.26 29.2937 – – −0.0280
(2.24)∗ (−3.13)∗ (1.39) (−1.08)

Equation 4d −1135.0352 – 115171.87 1.9247 – −147.426 –
(−0.70) (0.66) (0.71) (−0.70)
−450.092 – 35166.37 6.2553 – −59.5745 –
(−0.62) (0.45) (4.32)∗ (−0.64)

Equation 4e −3330.7844 – 373930.36 −84.4887 – −427.689 0.1048
(−1.24) (1.22) (−1.00) (−1.24) (1.03)
956.9716 – −127989.2 53.9764 – 120.5089 −0.0577
(0.63) (−0.74) (1.20) (0.62) (−1.06)

Values in parenthesis are student t values. The first row for each equation contains the coefficient in front of each variable shown at the top of the
table as estimated by ordinary least squares and the second row contains the same coefficients as estimated using weighted least squares. W1 is the
weighting for the estimate made of �1, τ is stress, T is temperature and Ln is the natural log. ∗Indicates a statistically significant variable at the 5%
significance level.

T ABL E IV Least squares parameter estimates for various interpolation/extrapolation functions for �2

Variable

Model for �2 Constant T 1/T τ/T τ ∗T Ln[1/T ] τ

Model for W ∗
2 �2 W2 W ∗

2 T W2/T (W ∗
2 τ )/T W ∗

2 τ ∗T W ∗
2 Ln[1/T ] W ∗

2 τ

Equation 2c −99.1996 0.0918 – – −6.8200E-05 – 0.0935
(−2.74)∗ (2.11)∗ (−0.51) (−0.86)
−15.1599 −0.0066 – – 0.0001833 – −0.1207
(−0.56) (−0.20) (1.87) (−1.50)

Equation 4a 46.7885 – −58076.1 31.2317 – – –
(5.40)∗ (−6.97)∗ (6.85)∗
32.5569 – −44095.3 25.0847 – – –
(4.44)∗ (−6.22)∗ (6.59)∗

Equation 4b 62.1545 – −70698.8 70.9362 – – −0.0486
(1.75) (−2.40)∗ (0.80) (−0.45)
−18.1458 – −2194.51 −104.5750 – – 0.1577
(−0.67) (−0.10) (−1.56) (1.94)

Equation 4d 1411.66 – −204192.0 31.6864 – 176.8820 –
(0.50) (−0.67) (6.73)∗ (0.48)
3078.0400 – −371904.7 26.8232 – 394.4021 –
(1.36) (−1.52) (6.75)∗ (1.34)

Equation 4e 6492.03 – −802892.0 231.624 – 825.3370 −0.2425
(1.41) (-1.53) (1.60) (1.39) (−1.38)
−1876.1500 – 211021.6 −152.6745 – −238.236 0.2149
(−0.45) (0.44) (−1.20) (−0.45) (1.41)

Values in parenthesis are student t values. The first row for each equation contains the coefficient in front of each variable shown at the top of the
table as estimated by ordinary least squares and the second row contains the same coefficients as estimated using weighted least squares. W2 is the
weighting for the estimate made of �2, τ is stress, T is temperature and Ln is the natural log. *Indicates a statistically significant variable at the 5%
significance level.

The test matrix is shown in Table II using normal nu-
merals and it can be seen that the 33 specimens were
all tested at accelerated stresses and temperatures that
therefore lead to relatively short times to rupture. For
all specimens some 400 creep strain/time readings were
taken and normal creep curves were observed under all
the test conditions. As complete creep curves at various

2873



test conditions are available, the theta interpolation/
extrapolation functions will be estimated from just this
set of data.

To assess the impact of different functional forms of
the theta interpolation/extrapolation function on rup-
ture time predictions made using the theta projection
technique an additional source of data was also used.
This source of data has much longer rupture lives than

T ABL E V Least squares parameter estimates for various interpolation/extrapolation functions for �3

Variable

Model for �3 Constant T 1/T τ/T τ ∗T Ln[1/T ] τ

Model for W ∗
3 �3 W3 W ∗

3 T W3/T (W ∗
3 τ )/T W ∗

3 τ ∗T W ∗
3 Ln[1/T ] W ∗

3 τ

Equation 2c 65.0119 −0.0826 – – 0.0002816 – −0.2413
(1.61) (−1.70) (1.90) (−1.98)∗
95.1950 −0.1138 – – 0.0003442 – −0.30417
(2.57)∗ (−2.53)∗ (2.55)∗ (−2.75)∗

Equation 4a −0.4022 – −2093.90 −8.6104 – – –
(−0.04) (−0.21) (−1.59)
−5.9728 – 6440.54 −18.5609 – – –
(−0.98) (1.07) (−4.65)∗

Equation 4b −67.1698 – 52753.6 −181.133 – – 0.2109
(−1.67) (1.58) (−1.80) (1.71)
−88.5745 – 74083.80 −223.9300 – – 0.2515
(−2.36)∗ (2.39)∗ (−2.42)∗ (2.22)∗

Equation 4d 6681.71 – −717448.0 −6.3839 – 865.979 –
(2.14)∗ (−2.14)∗ (−1.23) (2.14)∗
5435.4200 – −576735.0 −15.0440 – 705.1790 –
(2.47)∗ (−2.45)∗ (−3.80)∗ (2.47)∗

Equation 4e 6257.7800 – −667489.0 −23.0677 – 811.8680 0.0202
(1.19) (−1.11) (−0.14) (1.20) (0.10)
3803.8860 – −375174.0 −109.3560 – 498.6023 0.1142
(1.20) (−1.02) (−0.84) (1.23) (0.72)

Values in parenthesis are student t values. The first row for each equation contains the coefficient in front of each variable shown at the top of the
table as estimated by ordinary least squares and the second row contains the same coefficients as estimated using weighted least squares. W3 is the
weighting for the estimate made of �3, τ is stress, T is temperature and Ln is the natural log. *Indicates a statistically significant variable at the 5%
significance level.

T ABL E VI Least squares parameter estimates for various interpolation/extrapolation functions for �4

Variable

Model for �4 Constant T 1/T τ/T τ ∗T Ln[1/T ] τ

Model for W ∗
4 �4 W4 W ∗

4 T W4/T (W ∗
4 τ )/T W ∗

4 τ ∗T W ∗
4 Ln[1/T ] W ∗

4 τ

Equation 2c −96.1948 0.0813 – – 8.4499E-07 – 0.0513
(−5.46)∗ (3.84)∗ (0.01) (0.97)
−105.0890 0.0923 – – −1.8273E-05 – 0.0664
(−8.25)∗ (5.91)∗ (−0.39) (1.75)

Equation 4a 54.6331 – −69076.1 42.8071 – – –
(12.6)∗ (−16.50)∗ (18.70)∗
58.7890 – −72203.90 42.0042 – – –
(20.8)∗ (−25.2)∗ (22.9)∗

Equation 4b 47.0780 – −62869.8 23.2854 – – 0.0239
(2.64)∗ (−4.25)∗ (0.52) (0.44)
58.2955 – −71807.80 40.7772 – – 0.0015
(4.24)∗ (−6.42)∗ (1.22) (0.04)

Equation 4d −703.058 – 12038.5 42.5547 – −98.1940 –
(−0.49) (0.08) (18.0)∗ (−0.53)
−1439.4200 – 88165.70 41.1385 – −194.188 –
(−1.64) (0.94) (22.3)∗ (−1.71)

Equation 4e −3349.6500 – 323926.00 −61.6014 – −436.002 0.1263
(−1.45) (1.23) (−0.85) (−1.47) (1.44)
−3177.9394 – 298225.57 −45.5069 – −415.058 0.1070
(−2.59)∗ (2.12)∗ (−1.02) (−2.64)∗ (1.94)

Values in parenthesis are student t values. The first row for each equation contains the coefficient in front of each variable shown at the top of the
table as estimated by ordinary least squares and the second row contains the same coefficients as estimated using weighted least squares. W4 is the
weighting for the estimate made of �4, τ is stress, T is temperature and Ln is the natural log. *Indicates a statistically significant variable at the 5%
significance level.

the one above and is made up of nine different batches
of material. All these batches were tested at the Na-
tional Research Institute for Metals in Japan (NRIM).
The forgings used in this test program were sampled
at random from a commercial stock and the test speci-
mens had 10 mm diameters and 50 mm gauge lengths.
The creep rupture tests were constant stress tests, con-
ducted as specified in JIS Z 2272 [11], and published in
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their No. 9B data sheet [12]. This NRIM data set only
contains times to rupture and minimum creep rates (the
only recorded strains were those at rupture) and the full
test matrix is shown in Table II using bold numerals.
The chemical composition of each batch together with
their heat treatments is summarised in Table I.

It can be seen from Table I that these two sources
of data are broadly similar in composition and they
received similar heat treatments—with one notable ex-
ception. The batch of material tested at the IRC has
roughly twice as much nickel. This can be expected to
lead to slightly lower rupture times in the NRIM data set
when compared to the IRC data set at equivalent stresses
and temperatures. This expectation is confirmed in
Section 4 below.

3. The θ projection technique
3.1. The general model
The θ projection technique has a number of basic steps.
First, there is the experimental stage where uniaxial (or
multiaxial) constant stress creep curves are measured
over a narrow range of accelerated stresses and tem-
peratures. Second, the form of these creep curves are
modelled in such a way as to give a good description

T ABL E VII Mean absolute percentage prediction errors made using
the 4� prediction technique with the interpolation/extrapolation function
given by Equation 2c

Temperature Type of prediction Unweighted (%) Weighted (%)

783 K Interpolation 14.63 12.54
Extrapolation 97.4 68.82
Overall 88.2 62.57

803 K Interpolation 35 36.42
Extrapolation 148.63 60.49
Overall 80.45 46.05

823 K Interpolation 33.01 24.81
Extrapolation 420.25 41.74
Overall 382.61 40.09

843 K Interpolation 12.97 38.18
Extrapolation 1014.97 149.49
Overall 552.51 98.12

863 K Interpolation 36.26 38.00
Extrapolation 3379.59 482.32
Overall 3015.48 435.45

923 K Extrapolation 188.51 290.19
Other Extrapolation 417.29 389.64

Overall 371.39 343.08
All temperatures Interpolation 27.59 29.68

Extrapolation 1110.9 217.7
Overall 973.4 193.84

The interpolation error is the mean absolute % prediction error made
by the theta prediction technique using the interpolation/extrapolation
function given by Equation 2c at the accelerated test conditions shown
in Table II. The extrapolation error is the mean absolute % prediction
error made by the theta prediction technique using the interpolation/
extrapolation function given by Equation 2c at the NRIM test con-
ditions shown in Table II. The overall error is the mean absolute
% prediction error made by the theta prediction technique using the
interpolation/extrapolation function given by Equation 2c at all the test
conditions shown in Table II. Other temperatures are 723 K, 803 K,
898 K and 948 K. Unweighted refers to prediction errors made using
the ordinary least squares estimates of the coefficients of Equation 2c
shown in Tables III–VI. Weighted refers to prediction errors made using
the weighted least squares estimates of the coefficients of Equation 2c
shown in Tables III–VI.

of the experimental data. A single creep curve at steady
uniaxial stress τ and absolute temperature T can be
modelled using a general functional form

ε = η(t, �1, �2, . . . , � j , . . . , �m), (1a)

where η is some non-linear function, ε is the uniaxial
creep strain at time t and � j are numerical parameters
that can be determined from the experimental creep
curves using a suitable estimation technique.

The third stage of the theta projection technique is
to project creep curves to stresses and temperatures—
either within (i.e., interpolation) or outside (i.e., extrap-
olation) the original range of accelerated test condi-
tions using a suitable theta interpolation/extrapolation
function

� j = g j (τ, T, b j1, b j2, . . . , b jk, . . . , b jp). (1b)

Lastly, the required creep properties (such as the
minimum creep rate or time to x% strain) can
be ‘read off’ these projected creep curves. This,
broadly speaking is how the theta projection technique
works.

TABLE VII I Mean absolute percentage prediction errors made using
the 4� prediction technique with the interpolation/extrapolation function
given by Equation 4a

Temperature Type of prediction Unweighted (%) Weighted (%)

783 K Interpolation 21.29 16.31
Extrapolation 82.47 76.29
Overall 164.56 69.63

803 K Interpolation 35.62 35.56
Extrapolation 226.77 43.38
Overall 112.08 38.69

823 K Interpolation 37.57 25.67
Extrapolation 454.53 43.31
Overall 414 41.60

843 K Interpolation 15.26 42.30
Extrapolation 687.98 52.71
Overall 377.49 47.91

863 K Interpolation 31.37 52.73
Extrapolation 1180.65 39.21
Overall 1057.34 40.19

923 K Extrapolation 166.30 82.69
Other Extrapolation 363.28 341.86

Overall 324.24 302.55
All temperatures Interpolation 29.29 34.58

Extrapolation 543.59 64.94
Overall 478.31 61.09

The interpolation error is the mean absolute % prediction error made
by the theta prediction technique using the interpolation/extrapolation
function given by Equation 4a at the accelerated test conditions shown
in Table II. The extrapolation error is the mean absolute % prediction
error made by the theta prediction technique using the interpolation/
extrapolation function given by Equation 4a at the NRIM test conditions
shown in Table II. The overall error is the mean absolute % prediction
error made by the theta prediction technique using the interpolation/
extrapolation function given by Equation 4a at all the test conditions
shown in Table II. Other temperatures are 723 K, 803 K, 898 K and
948 K. Unweighted refers to prediction errors made using the ordi-
nary least squares estimates of the coefficients of Equation 4a shown
in Tables III–VI. Weighted refers to prediction errors made using the
weighted least squares estimates of the coefficients of Equation 4a shown
in Tables III–VI.
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3.2. Implementation of the θ projection
technique

Application of the θ projection technique requires a
specification for the functional forms of η and g j in
Equations 1a and b above. In the past a variety of dif-
ferent functional forms have been put forward [13, 14].
Traditionally the θ projection technique has used the
following 4� expression because it has been shown to
give a good representation (at least for large strains) of
experimental creep curves at any test condition [15]

ε = �1(1 − e−�2t ) + �3(e�4t − 1). (2a)

Very recently the fit of Equation 2a to an experimental
creep curve at small strains has been shown to be quite
poor. This miss specification has lead to considerable
errors in the calculation of times to small strains and to
initial and minimum creep rates in various steels [1, 9]
and aluminium alloys [8]. So in recent years the theta
projection technique has been modified by Evans [8] to
allow the option of using the following 6θ modification
to Equation 2a

ε = θ1(1 − e−θ2t ) + θ3(eθ4t − 1) + θ5(1 − e−θ6t ). (2b)

T ABL E IX Mean absolute percentage prediction errors made using
the 4� prediction technique with the interpolation/extrapolation function
given by Equation 4b

Temperature Type of prediction Unweighted (%) Weighted (%)

783 K Interpolation 17.45 16.52
Extrapolation 132.45 73.08
Overall 119.68 66.79

803 K Interpolation 34.2 35.99
Extrapolation 168.50 56.8
Overall 87.92 44.32

823 K Interpolation 31.46 26.18
Extrapolation 427.72 39.19
Overall 389.20 37.93

843 K Interpolation 13.84 40.34
Extrapolation 933.11 110.64
Overall 508.83 78.19

863 K Interpolation 38.28 41.46
Extrapolation 27777.06 279.56
Overall 2480.04 255.22

923 K Extrapolation 238.99 197.06
Other Extrapolation 634.04 543.94

Overall 560.46 478.83
All temperatures Interpolation 28.08 31.93

Extrapolation 973.7 153.01
Overall 853.68 137.64

The interpolation error is the mean absolute % prediction error made
by the theta prediction technique using the interpolation/extrapolation
function given by Equation 4b at the accelerated test conditions
shown in Table II. The extrapolation error is the mean absolute %
prediction error made by the theta prediction technique using the
interpolation/extrapolation function given by Equation 4b at the NRIM
test conditions shown in Table II. The overall error is the mean abso-
lute % prediction error made by the theta prediction technique using
the interpolation/extrapolation function given by Equation 4b at all the
test conditions shown in Table II. Other temperatures are 723 K, 803 K,
898 K and 948 K. Unweighted refers to prediction errors made using
the ordinary least squares estimates of the coefficients of Equation 4b
shown in Tables III–VI. Weighted refers to prediction errors made using
the weighted least squares estimates of the coefficients of Equation 4b
shown in Tables III–VI.

These two variants have become known as the 4�

and 6θ theta projection techniques and values for all
the theta parameters are estimated using the non linear
least squares technique in Evans [15]. The advantage
of both these forms is that theory suggests that each θ j

and each � j are functionally related to both stress and
temperature. Traditionally, the following representation
for the function g j in Equation 1b has been used when
applying the theta projection technique

ln(� j ) = a j1 + a j2τ + a j3T + a j4τT j = 1, 4

ln(θ j ) = b j1 + b j2τ + b j3T + b j4τT j = 1, 6

(2c)

Whilst a lot of recent research as gone into improving
the modelling of strain with respect to time (i.e., the 6θ

model) little has been done to assess the validity of
the theta interpolation/extrapolation function given by
Equation 2c.

3.3. Possible theta interpolation/
extrapolation functions

Indeed there are theoretical reasons for believing that
Equation 2c may well be adequate for interpolation

TABLE X Mean absolute percentage prediction errors made using the
4� prediction technique with the interpolation/extrapolation function
given by Equation 4d

Temperature Type of prediction Unweighted (%) Weighted (%)

783 K Interpolation 22.01 16.35
Extrapolation 213.13 93.77
Overall 191.89 85.17

803 K Interpolation 34.81 35.85
Extrapolation 228.48 54.49
Overall 112.28 43.31

823 K Interpolation 32.91 24.99
Extrapolation 437.44 41.49
Overall 398.11 39.89

843 K Interpolation 15.63 40.21
Extrapolation 714.29 57.59
Overall 391.83 49.57

863 K Interpolation 35.48 49.36
Extrapolation 1656.16 44.53
Overall 1480 45.31

923 K Extrapolation 41.09 31.84
Other Extrapolation 311.37 142.95

Overall 277.84 128.15
All temperatures Interpolation 28.99 33.32

Extrapolation 650.25 55.67
Overall 571.39 52.84

The interpolation error is the mean absolute % prediction error made
by the theta prediction technique using the interpolation/extrapolation
function given by Equation 4d at the accelerated test conditions
shown in Table II. The extrapolation error is the mean absolute %
prediction error made by the theta prediction technique using the
interpolation/extrapolation function given by Equation 4d at the NRIM
test conditions shown in Table II. The overall error is the mean abso-
lute % prediction error made by the theta prediction technique using
the interpolation/extrapolation function given by Equation 4d at all the
test conditions shown in Table II. Other temperatures are 723 K, 803 K,
898 K and 948 K. Unweighted refers to prediction errors made using
the ordinary least squares estimates of the coefficients of Equation 4d
shown in Tables III–VI. Weighted refers to prediction errors made using
the weighted least squares estimates of the coefficients of Equation 4d
shown in Tables III–VI.
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T ABL E XI Mean absolute percentage prediction errors made using
the 4� prediction technique with the interpolation/extrapolation function
given by Equation 4e

Temperature Type of prediction Unweighted (%) Weighted (%)

783 K Interpolation 12.67 10.25
Extrapolation 97.79 59.86
Overall 88.34 54.35

803 K Interpolation 35.47 36.34
Extrapolation 161.51 40.89
Overall 85.89 38.16

823 K Interpolation 33.15 23.38
Extrapolation 431.31 57.44
Overall 392.60 54.13

843 K Interpolation 12.97 35.77
Extrapolation 910.19 164.59
Overall 496.09 105.14

863 K Interpolation 34.90 35.18
Extrapolation 2905.30 317.35
Overall 2589.40 289.05

923 K Extrapolation 84.61 237.85
Other Extrapolation 734.57 210.54

Overall 648.98 185.47
All temperatures Interpolation 27.06 27.7

Extrapolation 979.09 163
Overall 858.25 145.82

The interpolation error is the mean absolute % prediction error made
by the theta prediction technique using the interpolation/extrapolation
function given by Equation 4e at the accelerated test conditions
shown in Table II. The extrapolation error is the mean absolute %
prediction error made by the theta prediction technique using the
interpolation/extrapolation function given by Equation 4e at the NRIM
test conditions shown in Table II. The overall error is the mean abso-
lute % prediction error made by the theta prediction technique using
the interpolation/extrapolation function given by Equation 4e at all the
test conditions shown in Table II. Other temperatures are 723 K, 803 K,
898 K and 948 K. Unweighted refers to prediction errors made using
the ordinary least squares estimates of the coefficients of Equation 4e
shown in Tables III–VI. Weighted refers to prediction errors made using
the weighted least squares estimates of the coefficients of Equation 4e
shown in Tables III–VI.

purposes at intermediate temperatures but that it is un-
likely to be suitable for extrapolation purposes. An in-
sight into why this might be the case can be seen by
taking Kachanov’s [16] damage parameter approach to
failure. Here the creep rate is given a power law repre-
sentation

dε

dt
= ε̇ = Aτm(1 − ω)−m ≈ Aτm(1 + mω) (3a)

where ω is the fraction of a specimens cross section
occupied by voids and A and M is a model constants.
If ω is assumed to be directly proportional to the strain
in tertiary creep, (ω = Cε), then

ε̇ = ε̇m(1 + mCε) (3b)

where ε̇m is the minimum creep rate given by Aτm . The
solution to Equation 3b is then

ε = 1

mC
(emC ε̇m t − 1) (3c)

Comparing Equation 3c with Equation 2a gives �3 =
1/mC and �4 = mC ε̇m . m and C and thus �3 are geo-
metrical factors that should not depend rapidly on stress
or temperature. However, the minimum creep rate and

thus �4 is expected to vary with stress and tempera-
ture. A generalisation given by Evans [4] leads to a
similar conclusion for �1 and �2. Thus �2 and �4
are often termed rate constants and �1 and �3 strain
like quantities. The dependency of �2 and �4 on stress
and temperature may be treated on an atomic scale by
considering the jump rate of the dislocations

Forward jump rate = B exp

[
−U − V τ

kT

]
,

Backward jump rate = B exp

[
−U + V τ

kT

]
,

Resultant jump rate = 2B exp

[
− U

kT

]
sinh

[
V τ

kT

]
,

where U is the activation energy required to move a
dislocation in the absence of an external stress, τ is the
shear stress, k is the universal gas constant and V the
activation volume. Thus under the assumption that the
backward jump is small enough to ignore,

ln[� j ] = c j1 + c j2
1

T
+ c j3

τ

T
. (4a)

Equation 4a clearly differs from Equation 2c. Over
a narrow and intermediate temperature range the
parabolic relation between ln[� j ] and T is approxi-
mately linear so that Equation 2c can be seen as an ap-
proximation to Equation 4a over such a range. Hence
Equation 2c may be adequate for interpolation with re-
spect to temperature changes but is likely to be inferior
to Equation 4a when it comes to extrapolation. Notice
also that in Equation 4a, stress enters into the expres-
sion only via its interaction with temperature. A possi-
ble generalisation of Equation 4a would be to include
stress on its own

ln[� j ] = d j1 + d j2
1

T
+ d j3

τ

T
+ d j4τ. (4b)

If the backward jump were also taken into account
another generalisation of Equation 4a would be

ln[� j ] = e j1 + e j2
1

T
+ sinh

[
e j3

τ

T

]
(4c)

However, the identification of this equation may
require a wider range of test conditions than those
typically used in accelerated testing. Further, Eyring
et al. [17] have suggested that the above Arrhenius
type expressions in temperature may lack theoretical
justification when factors other than temperature are
important in determining rate processes. An Eyring
model based on chemical reaction rate theory and quan-
tum mechanics for the minimum creep rate would
suggest the following functional form for the theta
interpolation/extrapolation function

ln[� j ] = f j1 + f j2
1

T
+ f j3

τ

T
+ f j4 ln

1

T
(4d)

A possible generalisation of this would be to include
stress on its own
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ln[� j ] = h j1 + h j2
1

T
+ h j3

τ

T
+ h j4 ln

1

T
+ h j5τ

(4e)

The parameters in Equations 4 can be estimated ei-
ther by weighted or ordinary least squares. In ordinary
least squares the parameter values in each of these equa-
tions (i.e. C j to k j values) are chosen so as to minimise
the squared difference between each measured value for
� j and that predicted by the equation under considera-
tion. In weighted least squares each variable (including
the intercept terms) is first multiplied by a weight and
least squares applied to these transformed equations.
The weights reflect the fact that each � j is not a known
quantity but is instead estimated from the experimen-

(a)

(b)

Figure 1 (a) Variation of �1 with stress and temperature together with weighted and unweighted interpolationss. (b) Variation of �2 with stress
and temperature together with weighted and unweighted interpolations. (c) Variation of �3 with stress and temperature together with weighted and
unweighted interpolations. (d) Variation of �4 with stress and temperature together with weighted and unweighted interpolations. (e) Variation of εR

with stress and temperature together with weighted and unweighted interpolations. (Continued).

tal data. So those � j values with large variances should
have small weights and those with small variances large
weights according to the formula

W j = �2
j

Var[� j ]
(4f)

where Var[� j ] is the variance associated with the esti-
mated value for � j . Evans [10] has suggested a robust
method for estimating such variances and this is the
technique used in this paper. Section 4 below looks at
how sensitive the 4� rupture time predictions are to
these possible functional forms and to the procedure of
weighting.
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(c)

(d)

(e)

Figure 1 (Continued).
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3.4. Assessing the accuracy of predictions
made from the 4� technique

Any one of the above theta interpolation/extrapolation
functions can be used to project the � j values to any
stress-temperature combination. These can then be in-
serted into Equation 2a and the rupture time predicted
by finding that value for t that yields the predicted rup-
ture strain, εP

Ri , at that i th test condition. The predicted
rupture strain is in turn found by replacing Ln[� j ] with
Ln[ε] in Equation 2c and or 4a to e. The accuracy of
such predictions over a range of test conditions can then

(a)

(b)

Figure 2 (a) Predicted σ/tR plots for constant stress conditions, compared with measured tR values obtained from short tests at 783 K (IRC) and
long term tests at 783 K (NRIM). (b) Predicted σ/tR plots for constant stress conditions, compared with measured tR values obtained from short
tests at 803 K (IRC) and long term tests at 803 K (NRIM). (c) Predicted σ/tR plots for constant stress conditions, compared with measured tR values
obtained from short tests at 823 K (IRC) and long term tests at 823 K (NRIM). (d) Predicted σ/tR plots for constant stress conditions, compared
with measured tR values obtained from short tests at 843 K (IRC) and long term tests at 843 K (NRIM). (e) Predicted σ/tR plots for constant stress
conditions, compared with measured tR values obtained from short tests at 863 K (IRC) and long term tests at 863 K (NRIM). (f) Predicted σ/tR plots
for constant stress conditions, compared with measured tR values obtained from short tests at 923 K (IRC) and long term tests at 923 K (NRIM). (g)
Predicted σ/tR plots for constant stress conditions, compared with measured tR values obtained from long term tests at various other temperatures
(NRIM). (Continued.)

be obtained using the following summary statistic

MAPE =
N∑

i=1




∣∣t A
Ri − t P

Ri

∣∣
t A
Ri

N


 , (5)

where MAPE is the mean absolute percentage error, t P
Ri

is the predicted rupture time at the i th test condition,
t A
Ri the actual rupture time at the i th test condition and

N the number of predictions made.
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(c)

(d)

(e)

Figure 2 (Continued.)
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(f)

(g)

Figure 2 (Continued.)

A MAPE can be calculated for any of the above
theta interpolation/extrapolation functions. Further, a
MAPE can also be calculated for just the accelerated
(IRC) test conditions shown in Table II. This will be
called an interpolation MAPE because each of the theta
interpolation/extrapolation function shown above are
estimated using the results from such test conditions.
A MAPE can also be calculated for just the NRIM
test conditions shown in Table II. This will be called
an extrapolation MAPE because each of the theta
interpolation/extrapolation function shown above
are not estimated using results from such test
conditions.

4. Results of sensitivity analysis
4.1. The interpolation/extrapolation

functions for �j
Fig. 1 show the experimental values for � j at the accel-
erated test conditions together with the values predicted

by Equation 4d using the estimated coefficients shown
in Tables III to VI. Both the weighted and unweighted
predictions are shown and as can be seen the weighting
procedure does make a considerable difference to the
predictions obtained. As expected the variation of �1
and �3 with stress and temperature is not as large as
that for �2 and �4, although weighting the �1 and �3
estimates does lead to a more pronounced trend with
respect to stress. The effect of weighting �2 is a lit-
tle more complicated. At low temperatures the fitted
lines become shallower following weighting and this
effect becomes more pronounced as the temperature is
increased. For �4, weighting seems to shift the fitted
line down at low temperatures and then as the temper-
ature increases this effect is diminished until at high
temperatures weighting appears to shift the fitted line
upwards. Fig. 1e shows the variation of rupture strain
with stress and temperature, together with the inter-
polations given by Equation 4d (with ln[εR] replacing
ln[� j ]).
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Tables III to VI also show the results of estimat-
ing the other theta interpolation/extrapolation func-
tions for � j derived in Section 3.3 above. Both the
ordinary least squares and weighted least squares es-
timates are given. It can be seen from Tables IV
and VI, that only in Equation 4a are all the ex-
planatory variables statistically significant when us-
ing ordinary least squares as the estimation technique.
This may suggest that the more parsimonious the
equation the better suited it will be to rupture time
predictions.

Notice that Equation 4c is not estimated at all. This
is because the value for e j3 in Equations 4c and c j3
in Equation 4a work out to be very similar, implying
that the stress/temperature range for the accelerated test
conditions in Table II are not broad enough to pick up
any sinh non linearity. It may be the case that the sinh
expression is more appropriate but more test conditions
would be required to prove this. This could form an
interesting area for future research.

4.2. The MAPE statistics
It is interesting to measure what impact the different
theta interpolation/extrapolation functions, and their es-
timation via weighted or ordinary least squares, has on
the resulting rupture time predictions. This impact is
measured in Tables VII to XI using the mean absolute
percentage error (MAPE) given by Equation 5 above.
The predictions are also summarised in Fig. 2a to g
where predictions are shown together with the shorter
term IRC rupture data and the longer-term NRIM rup-
ture data. The scatter in the NRIM data reflects the fact
that each data point at a given stress corresponds to a
different batch of material.

A number of important observations can be drawn
from Tables VII to XI. First, and irrespective of the
type of theta interpolation/extrapolation function used,
the prediction is always better if such functions are es-
timated using weighted least squares. The overall pre-
diction error is always much lower when a weighting
scheme is used because such a weighting procedure
seems to dramatically improve the predictions made in
extrapolation without significantly worsening the pre-
dictions made in interpolation.

Secondly, the best overall predictions are obtained
using the theta interpolation/extrapolation function
given by either Equation 4d or 4a. If weighted least
squares is used, then Equation 4d is best, if ordinary
least squares is used then Equation 4a is best. This re-
flects the fact that the variable ln(1/T ) often shows up
as being more statistically significant, in Tables III–VI,
when weighted least squares is used. It therefore ap-
pears to be the case that stress should only be included
in the theta interpolation/extrapolation function as an
interaction with temperature, i.e, τ/T should appear
but not τ as well. Irrespective of weighting, the tradi-
tional theta interpolation/extrapolation function, given
by Equation 2c, always produced the worst over all
prediction error.

If predictions are then broken down by temperature
some additional results stand out. At 783 K the IRC and
NRIM data sets are broadly comparable at the higher

stresses. Here Equation 2c actually extrapolates better
than Equation 4d irrespective of the estimation tech-
nique as shown in Fig. 2a and Tables VII–XI. However
this appears to be the exception rather than the rule.

At 803 K the IRC specimens appear to have had
much longer lives than the NRIM specimens at the
higher stresses. This is likely to reflect the higher
nickel content present in the IRC test specimens. De-
spite this, all the theta interpolation/extrapolation func-
tions produced similar interpolation errors but Equa-
tion 4d, as estimated using weighted least squares, pro-
duced marginally better extrapolations when compared
to Equation 2c, as shown in Fig. 2b and Tables VII–XI.

At 823 K the IRC specimens appear to have produced
very similar lives to the NRIM specimens at the higher
stresses. Here Equations 4d and 2c produce almost iden-
tical interpolative and extrapolative errors in prediction.
However, these errors are always lower if a weighted
least squares procedure is used as shown in Fig. 2c and
Tables VII–XI.

At 843 K the IRC specimens appear to have had much
longer lives than the NRIM specimens at the higher
stresses. Again this is likely to reflect the higher nickel
content present in the IRC test specimens Despite this
all the theta interpolation/extrapolation function pro-
duced similar interpolation errors but Equation 4d as,
estimated using weighted least squares, produced much
better extrapolations when compared to Equation 2c, as
shown in Fig. 2d and Tables VII–XI. The same is true
if ordinary least squares is used instead.

At 863 K the IRC specimens appear to have had
much longer lives than the NRIM specimens at the
higher stresses. Despite this each theta interpolation/
extrapolation function produced similar interpolation
errors. Notice that the weighting scheme placed most
emphasis on the failure times obtained at the higher two
stresses so that the interpolative predictions appear to be
too small over all. However, as a result of this empha-
sis, the extrapolative predictions are much better and
are indeed excellent when using the theta interpolative/
extrapolative function given by Equation 4d, as shown
in Fig. 2e and Tables VII–XI.

At 923 K all the rupture time predictions are ex-
trapolative with respective to temperature as no IRC
data was available at this temperature. All the previous
figures have shown extrapolations with respect to stress
as all the temperatures in these figures are IRC test tem-
peratures. In Fig. 2f, the extrapolations with respect
to temperature are only reasonable if Equation 4d is
used as the theta interpolation/extrapolation function.
Further the extrapolations are better if Equation 4d is
estimated using weighted least squares.

Again in Fig. 2g all the predictions are extrapolative
with respect to temperature as no IRC data are avail-
able at the temperatures shown. Again the predictions
are much better when Equation 4d is used as the theta
interpolation/extrapolation function. Again it is best to
estimate this function using weighted least squares.

5. Conclusions
A number of conclusions can be drawn from the re-
sults above. First, irrespective of the functional form
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chosen for the theta interpolation/extrapolation func-
tion, it is always best to estimate such a function us-
ing weighted least squares. In particular the extrapo-
lated rupture times are always more accurate using such
weighted estimates. Secondly, the theta interpolation/
extrapolation function traditionally used in the theta
projection technique turns out to produce some of the
most inaccurate rupture time extrapolations. Third, the
theta interpolation/extrapolation function that produces
the most reliable forecast over a range of test conditions
includes only the terms 1/t and t/T . Indeed when ex-
trapolating with respect to temperature the use of the
terms T and tT in the traditional function produce very
poor rupture time predictions. At some temperatures,
predictions are marginally improved by including the
additional term ln(1/T ).

It would be interesting to see if the interpolation/
extrapolation function that has been shown to be best
for 1CrMoV rotor steel is also the best for other steels as
well. Further, it may beneficial to estimate creep curves
over a wide range of test conditions to see if the sinh
term can further improve rupture time predictions using
the theta technique. These could form areas for future
research.
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